Representation:
A sedenion, S, may be represented as an ordered
pair of two octonions, A and B, as
S := ( A ;
B ) .
By Cayley-Dickson process
the multiplication of two sedenions, S and T, in terms of four octonions,
A, B, C, D, may be defined as
S T := ( A
; B ) ( C ; D ) := ( AC + gD*B ; BC*
+ DA ) ,
where B* is a conjugate of B, and g
is a field parameter.
A sedenion, S, may also be written componentwise
as
S := m=0S15
sm em
= s0 e0
+ j=1S15
sj ej ,
where em
are the basal elements of S. The
basal elements, em
, may be constructed from octonion basal elements, im
, analogous to the method used for octonion basal elements. If we
choose the multiplication rule for octonions as described for our octonion
basis ( i.e. the field parameter,
g,
is chosen as -1 at each iteration of the Cayley-Dickson process ) we obtain
the multiplication rule summarized in the following table.
|
e0 = 1
|
e1
|
e2
|
e3
|
e4
|
e5
|
e6
|
e7
|
e8
|
e9
|
e10
|
e11
|
e12
|
e13
|
e14
|
e15
|
e0 = 1
|
1
|
e1
|
e2
|
e3
|
e4
|
e5
|
e6
|
e7
|
e8
|
e9
|
e10
|
e11
|
e12
|
e13
|
e14
|
e15
|
e1
|
e1
|
-1
|
e3
|
-e2
|
e5
|
-e4
|
-e7
|
e6
|
e9
|
-e8
|
-e11
|
e10
|
-e13
|
e12
|
e15
|
-e14
|
e2
|
e2
|
-e3
|
-1
|
e1
|
e6
|
e7
|
-e4
|
-e5
|
e10
|
e11
|
-e8
|
-e9
|
-e14
|
-e15
|
e12
|
e13
|
e3
|
e3
|
e2
|
-e1
|
-1
|
e7
|
-e6
|
e5
|
-e4
|
e11
|
-e10
|
e9
|
-e8
|
-e15
|
e14
|
-e13
|
e12
|
e4
|
e4
|
-e5
|
-e6
|
-e7
|
-1
|
e1
|
e2
|
e3
|
e12
|
e13
|
e14
|
e15
|
-e8
|
-e9
|
-e10
|
-e11
|
e5
|
e5
|
e4
|
-e7
|
e6
|
-e1
|
-1
|
-e3
|
e2
|
e13
|
-e12
|
e15
|
-e14
|
e9
|
-e8
|
e11
|
-e10
|
e6
|
e6
|
e7
|
e4
|
-e5
|
-e2
|
e3
|
-1
|
-e1
|
e14
|
-e15
|
-e12
|
e13
|
e10
|
-e11
|
-e8
|
e9
|
e7
|
e7
|
-e6
|
e5
|
e4
|
-e3
|
-e2
|
e1
|
-1
|
e15
|
e14
|
-e13
|
-e12
|
e11
|
e10
|
-e9
|
-e8
|
e8
|
e8
|
-e9
|
-e10
|
-e11
|
-e12
|
-e13
|
-e14
|
-e15
|
-1
|
e1
|
e2
|
e3
|
e4
|
e5
|
e6
|
e7
|
e9
|
e9
|
e8
|
-e11
|
e10
|
-e13
|
e12
|
e15
|
-e14
|
-e1
|
-1
|
-e3
|
e2
|
-e5
|
e4
|
e7
|
-e6
|
e10
|
e10
|
e11
|
e8
|
-e9
|
-e14
|
-e15
|
e12
|
e13
|
-e2
|
e3
|
-1
|
-e1
|
-e6
|
-e7
|
e4
|
e5
|
e11
|
e11
|
-e10
|
e9
|
e8
|
-e15
|
e14
|
-e13
|
e12
|
-e3
|
-e2
|
e1
|
-1
|
-e7
|
e6
|
-e5
|
e4
|
e12
|
e12
|
e13
|
e14
|
e15
|
e8
|
-e9
|
-e10
|
-e11
|
-e4
|
e5
|
e6
|
e7
|
-1
|
-e1
|
-e2
|
-e3
|
e13
|
e13
|
-e12
|
e15
|
-e14
|
e9
|
e8
|
e11
|
-e10
|
-e5
|
-e4
|
e7
|
-e6
|
e1
|
-1
|
e3
|
-e2
|
e14
|
e14
|
-e15
|
-e12
|
e13
|
e10
|
-e11
|
e8
|
e9
|
-e6
|
-e7
|
-e4
|
e5
|
e2
|
-e3
|
-1
|
e1
|
e15
|
e15
|
e14
|
-e13
|
-e12
|
e11
|
e10
|
-e9
|
e8
|
-e7
|
e6
|
-e5
|
-e4
|
e3
|
e2
|
-e1
|
-1
|
Just as with octonions one can write the multiplication
rule in somewhat more compact form by means of the following 35 sedenion
cycles:
( 1,2,3 ),
( 1,4,5 ), ( 1,7,6 ), ( 1,8,9 ), ( 1,11,10 ), ( 1,13,12 ), ( 1,14,15 )
( 2,4,6 ),
( 2,5,7 ), ( 2,8,10 ), ( 2,9,11 ), ( 2,14,12 ), ( 2,15,13 ),
( 3,4,7 ),
( 3,6,5 ), ( 3,8,11 ), ( 3,10,9 ), ( 3,13,14 ), ( 3,15,12 ),
( 4,8,12 ),
( 4,9,13 ), ( 4,10,14 ), ( 4,11,15 ),
( 5,8,13 ),
( 5,10,15 ), ( 5,12,9 ), ( 5,14,11 ),
( 6,8,14 ),
( 6,11,13 ), ( 6,12,10 ), ( 6,15,9 ),
( 7,8,15 ),
( 7,9,14 ), ( 7,12,11 ), ( 7,13,10 ).
The multiplication of two sedenion basal elements, ej
and ek , is given by
ej
ek = - dj
k + (jkm)S
e
jkm
e m , ( j, k, m
= 1,2,...,15 ) ,
where the summation is over all possible permutations
of the sedenion cycle, (j,k,m), and the structure constant, ejkm
, is totally anti-symmetric in its indices and is given by
e
jkm
= { |
1 if (j,k,m) is an even permutation, |
- 1 if (j,k,m) is an odd permutation, |
0 otherwise, |
|
} of a sedenion
cycle, |
and as usual,
As an example, the sedenion cycle, ( 5,12,9 ) implies
that
e9
e12 = - e5
, e9 e5
= e12 , etc.. |